Finger Dexterity, Skin Temperature, and Blood Flow During Auxiliary Heating in the Cold


  1. Brajkovic, D.
  2. Ducharme, M.B.
Corporate Authors
Defence R&D Canada - Toronto, Toronto ONT (CAN)
The primary purpose of the present study was to compare the effectiveness of two forms of hand heating and to discuss specific trends that relate finger dexterity performance to variables such as finger skin temperature (Tfing), finger blood flow (Qfing), forearm skin temperature (Tfsk), forearm muscle temperature (Tfmus), mean weighted body skin temperature (Tsk), and change in body heat content (ÄHb). These variables along with rate of body heat storage, toe skin temperature, and change in redial temperature were measured during direct and indirect hand heating. Direct hand heating involved the use of electrically heated gloves to keep the fingers warm (heated gloves condition), whereas indirect hand heating involved warming the fingers indirectly by actively heating the torso with an electrically heated vest (heated vest condition). Seven men (age 35.6 + or - 5.6 yr) were subjected to each method of hand heating while they sat in a chair for 3 h during exposure to -25C air. Qfing was significantly (P < 0.05) higher during the heated vest condition compared with the heated gloves condition (234 + or - 28 and 33 + or - 4 perfusion units, respectively), despite a similar Tfing (which ranged between 28 and 35C during the 3-h exposure). Despite the difference in Qfing, there was no significant difference in finger dexterity performance. Therefore, finger dexterity can be maintained with direct hand heating despite a low Qfing-ÄHb, Tsk, and Tfmus reached a low of -472 + or - 1
Finger dexterity;Heating equipment;Direct hand heating;Torso heating
Report Number
DRDC-TORONTO-SL-2003-027 — Scientific Literature
Date of publication
27 Jan 2003
Number of Pages
Reprinted from
J Appl Physiol, no 95, 2003, p 758-770
Hardcopy;Document Image stored on Optical Disk

Permanent link

Document 1 of 1

Date modified: